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Abstract

We consider the linear stability of the interface between two sheared elastic liquids at large Weissenberg number (Wi) with negligible inertia. The
liquids are of Oldroyd-B or UCM type and have matched viscosity. In UCM liquids, Renardy [Y. Renardy, Stability of the interface in two-layer
Couette flow of upper convected Maxwell liquids, J. Non-Newton. Fluid Mech. 28 (1988) 99-115] found a purely elastic instability for short-waves
in the absence of surface tension for which the perturbation flow decays exponentially away from the interface. For UCM liquids at large Wi we
show that this instability persists even though the wavelength is larger than the channel width and the disturbance occupies the entire channel.
Surprisingly, the growth rate is not affected by the location of the walls, even though the mode structure is altered. This analysis suggests a
reappraisal of the appropriateness of the short-wave and long-wave classifications for instabilities of viscoelastic liquids in order to accommodate
the additional length scale introduced by fluid velocity and relaxation. The instability persists for Oldroyd-B liquids even as the elastic contribution
to viscosity approaches zero. Surprisingly too, the inclusion of surface tension does not affect the asymptotic growth rate at large wavenumber.
When more modest values of Wi are considered, we find parameter values for which arbitrarily large surface tension reduces the growth rate but
does not stabilize the flow; previously proposed mechanisms based on the interface displacement are therefore inadequate to explain the instability.

Because the instability is locally generated, it appears in other high Wi flows with interfaces, both in channels and in pipes.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Viscoelastic flows are important in a number of industrial
applications and their instabilities have received considerable
attention. The elasticity provides a source of energy for insta-
bilities even in the absence of inertia, creating a class of purely
elastic instabilities. Reviews of purely elastic instabilities can
be found in [2,3]. In this paper, we study the stability to distur-
bances with wavenumber & of two inertialess Upper Convected
Maxwell (UCM) or Oldroyd-B liquids. The liquids undergo
shear in a channel of width L with characteristic velocity Up;
their viscosities are matched, but their relaxation times differ.

Much of the theoretical investigation of inertialess interfa-
cial instabilities in viscoelastic liquids began with Chen [4] in
the long-wave (wavelength long compared to channel width:
L < k1) limit and with Chen & Joseph and Renardy [1,5] in
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the short-wave (wavelength short compared to channel width:
k~! « L) limit. The physical mechanism behind the long-wave
instability was provided by Hinch et al. [6]. Related theoretical
work in both limits was done by Ganpule and Khomami [7-9].
The results were generalized for other liquids by Wilson [10]
and Wilson and Rallison [11-13].

Inertialess Couette flow of two Newtonian liquids with
matched viscosity is linearly stable, as is the inertialess Couette
flow of a single Oldroyd-B liquid [14,15]. A nonlinear stability
proof for UCM liquids in Poiseuille flow is claimed by [16] who
showed that the flow minimized an energy functional, but recent
work [17,18] shows that no reasonable energy functional will
decay monotonically in time for Oldroyd-B or UCM liquids.
This is further confirmed by some numerical simulations [19]
which find a finite amplitude nonlinear instability of Poiseuille
and Couette channel flow for Oldroyd-B liquids when the elas-
tic component of viscosity is large compared to the Newtonian
component of viscosity.

Because the Couette flow of a single inertialess Oldroyd-B
liquid is linearly stable, the short and long-wave interfacial insta-
bilities must be attributed to the jump in elastic properties at the
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interface. The wavespeed of the long-wave mode relative to the
interface is found to be much less than the velocity scale defined
by the wavelength and the growth rate, that is, at leading order
the wave remains stationary relative to the interface. This reflects
the fact that the instability can be explained in terms of the nor-
mal stress jump which is independent of the sign of the shear rate
[6]. In contrast, the short-wave mode travels with a relative speed
comparable to the velocity scale defined by its growth rate and
wavelength. The physical mechanism must involve some effect
which depends on the sign of the shear rate. Some mechanisms
have been suggested for this instability that depend on inter-
face displacement [9,20]. We show, however, that at sufficiently
large Weissenberg number this instability exists even if the inter-
face is held flat by surface tension, so a different explanation is
needed.

Renardy [1] considered interfacial instabilities of inertialess
Couette flow of UCM liquids for short-waves: k~! <« L. She
found that the perturbed flow is localized in a boundary layer
of thickness 1/k near the interface. Consequently short-wave
instabilities exist provided the walls are sufficiently far from the
interface. In the large Weissenberg number limit, she found that
the growth rate is a function only of the ratio of the two relaxation
times. For some ratios the flow is stable. In contrast, at low
Weissenberg number, all pairs of relaxation times are unstable.
The two limits involve different mechanisms. This paper focuses
on the large Weissenberg number limit.

Chen and Joseph [5] examined inertialess core-annular flow
of UCM liquids through a pipe without surface tension. They
found the same short-wave behavior as Renardy because the
curvature of the pipe disappears from the asymptotic equations.
With surface tension they claim that the flow stabilizes at large
enough k. Our results disagree with this conclusion.

Wilson and Rallison [11] generalized the UCM results to
Oldroyd-B liquids, again with k~! < L. They found that the
addition of a Newtonian component to the viscosity has a desta-
bilizing effect. In the limit where the Newtonian viscosity is large
compared to the elastic stress, they found instability whenever
the relaxation times of the two liquids are different. In the pres-
ence of surface tension at large enough & they showed that the
normal force due to surface tension dominates the elastic normal
force which suggests that the interface and hence the flow should
be stabilized. However, we show that at large Wi the normal force
balance is irrelevant to the stability.

We consider Couette flow through a channel of width L with
walls moving at a relative velocity of Uy. In characterizing the
different classes of interfacial instability it is important to rec-
ognize that for viscoelastic liquids in Couette flow three length
scales enter the problem: the channel width L, the wavelength
of the disturbance k~!, and the relative distance Upt travelled
by the walls in a relaxation time 7. This final length scale is a
measure of the distance a typical particle travels during a relax-
ation time. Other length scales can be constructed from these
three. For example liquid particles initially separated by the dis-
tance 2L / Uptk in the cross-stream (y) direction are separated
by a wavelength in the streamwise (x) direction after a relaxation
time. We find later that the length scale L/ Uytk determines the
thickness of boundary layers in the flow.

The previous analyses considered k! « L (short-waves) or
k~' > L (long-waves) and implicitly assumed that k~! « Upt
for short-waves or k~' > Uyt for long-waves. This leaves two
other limits unexplored: L < k! « Upr and Upt < k7! «
L. In the latter case the Weissenberg number Wi = Uypt/L is
small and the elastic effects are weak; the analysis of [1,5] for
k! « Upt « L applies to this case. This paper focuses on
the unexplored former case for which Wi >> 1. In this regime
the wavelength is long compared to the channel width, but
short compared to the relaxation length scale. This leads to a
mixture of short and long-wave properties, allowing us to use
standard short-wave techniques, but also to make standard long-
wave assumptions (e.g., the pressure gradient varies only in the
x-direction).

The organization of this paper is as follows: In Section 2 we
describe the governing equations and the unperturbed Couette
flow. In Section 3 we study the large Wi limit of the UCM liquid
analytically and numerically, and in Section 4 we study the large
Wi limit of the Oldroyd-B liquid numerically. We then discuss
the effect of surface tension, showing in Section 5 that even for
moderate Wi some flows are not stabilized by arbitrarily large
surface tension. In Section 6 we discuss the physical scalings
of the instability. An additional instability is briefly analyzed in
Section 7. In Section 8 we show that the main instability of this
paper is robust in that it persists for other flow profiles under
some mild assumptions. Finally, in Section 9 we offer some
concluding remarks.

2. Governing equations

Consider two incompressible Oldroyd-B liquids in steady
Couette flow in a channel of width L as shown in Fig. 1. We
choose the origin in y to be the location of the unperturbed inter-
face. The frame of reference is chosen to travel with the interface
velocity. The lower liquid occupies a fraction A of the channel;
the walls at y = (1 — A)L and y = —AL move horizontally
with velocity (1 — A)Up and — AU respectively.

The liquids have different relaxation times 7_ and 74 but
the same, constant, shear viscosity u, as well as the same rela-
tive contributions of elastic and Newtonian components to that
viscosity. Without loss of generality we take 7_ > 7. In the
absence of inertia we have

V.=0, 1

e A

T= T

Fig. 1. Two elastic liquids in Couette flow U = Upy/L through a channel. The
liquids differ only in relaxation time t.
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The stress tensor ¥ depends on an elastic strain A. The shear
viscosity u, identical for both liquids, is divided into Newtonian
and elastic parts through the parameter 8,0 < 8 < 1. The value
of B is also the same for both liquids. When g = 0 we have
Upper Convected Maxwell (UCM) liquids, while when g = 1
the liquids are Newtonian. In the absence of a perturbation, the
velocity is U = (Upy/L, 0).
The forces acting on the interface must balance, so

[X1-N =N, 6)

where the notation [ - ]| denotes the jump in the bracketed quan-
tity across the interface. N is the unit normal pointing into the
upper liquid, y the coefficient of surface tensionand x =V - N
the curvature of the interface. For the base flow N = (0, l)T.

In steady flow (3; + U - V)A = 0 so Eq. (3) implies that the
base elastic stress in each liquid is

A _ 2U3t3 /L) + 1 Upta/L
= Upts/L 1 '

This completes the definition of the base flow.

The linear perturbation equations for stability of modes pro-
portional to exp(ikx — iwt) are derived in Appendix A and agree
with those obtained in [11] with the addition of surface ten-
sion. We introduce a streamfunction y for the perturbation flow,
and use lowercase letters to denote perturbations to their upper-
case counterparts. The growth of the stresses is regulated by
o = —iw + ikU + 1/t which incorporates the complex growth
of the instability, advection by the base flow, and relaxation. We
look for modes for which the streamfunction  is not identically
zero (cf., [17,18] which show the existence of stress perturba-
tions which do not affect the velocity field). The appropriate
rescaling of these equations in the Wi >> 1 limit differs from
earlier treatments [1,5] and is described below.

In Appendix B, we derive general analytic solutions to the
non-dimensionalized linear perturbation equations of Section
2.1, but these are found to be useful only in limiting cases.
For more general parameter values we use numerical methods
described in Appendix C.

2.1. Non-dimensionalization

We use asterisks to denote non-dimensional variables and
choose a rescaling appropriate for Wi > 1.

The relevant length scales depend on elastic properties and
so have no analogue in Newtonian flows. The length scale Upt—
measures the relative distance travelled by particles on oppo-

Fig. 2. The flow profile U = y/k in non-dimensional variables. Without loss of
generality £ < 1.

site sides of the channel in a relaxation time. This is the most
appropriate measure of distance in the x-direction and we take
k* = Upt_k,

x* =x/Upt_

For the cross-stream y-direction, liquid particles separated by
27/ kWi in the vertical are separated by a wavelength 27/ k in
the horizontal after a relaxation time t_. So we define

v = Wi ky.

We rescale time with 7_ and so

T+

*
T = = .
+ é: T—

and without loss of generality 0 < & < 1. The values of w* and
o™ are now

o =1_w,

af =t ot = —iw* +iy* +1/1].

It is convenient to non-dimensionalize ¥ by

v

U2

w* — wkzr_ — k*2 ,
O‘E_

in which case the interfacial perturbation § is rescaled to
8 = ké.

Note that the scaling of § is different from that of x and y.
The pressure is rescaled by

*

Wi=3pr_
p=—

n
The a;; are already dimensionless, but in order to ensure that the
scaled variables remain O(1) as Wi — oo we set

aTl = Wi_3a11,

aTz = Wi_2a12,

a§2 = Wi_lazz.

The capillary number is given by Ca = Upu/y. We define the
dimensionless surface tension coefficient by

Yy =Ca 'wi.

When Wi — o0, y* — 0 unless Ca ~ wi—3.
We now drop the asterisks on the variables. The dimension-
less flow profile is then as given in Fig. 2. The dimensionless
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momentum equations (A.1) and (A.2) are now

1-p
. an}

+D [ﬁ(D2 + Wi Hy +

i [— p+ Wim22Dy +

1_
'35112:| =0, @)
T

i {,B(DZ + Wiy + ! ; ﬂm}

+D [—Wizp 2Dy + - p azz] o, ®)

where D denotes differentiation by y. The vorticity equation
(A.3) becomes

, 1\ 1-8

x iD(a —@)Jr D2+ Vap| =0 ©)
= ya wi ) @z =0,

where t jumps at the interface. The constitutive equations
(A.4)—(A.6) are

aay) = 2app + 227> + Wi~2)Dyr + 21Dy, (10)
aapy = axn + 21> + Wiy + Dy, (11)
aaxn =2ty — 2iDY, (12)

with o« = —iw + iy + 1/t. The interfacial conditions (A.8)-
(A.10) become

—2i(1 = plelo + DY+ (1 - ) [ 2] =0. (13
1 —
HiﬁD% + Tﬁ (iDalz + % _ au)ﬂ — kS, (14)
[v1 =0, (15)
[Dy] =0, (16)
and the perturbed interface location is
5=V (17)
w

The no-slip boundary conditions (A.7) at the walls become

Yv=Dy=0 at y=(1— Ak, —Ak. (18)
The wall locations explicitly depend on k. The only other appear-
ance of the wavenumber k is in the surface tension term in
(14).

Egs. (9)—(18) define the eigenvalue problem for w =
w(k, & B, A, Wi, y). We are primarily interested in the large Wi
limit. Examination of Eq. (9) shows that this is a regular limit,
and that the error is O(Wi~2). This is made explicit in Appendix
B. The coefficient of surface tension y is negligibly small at
large Wi unless Ca = O(Wi™?).

2.1.1. Linear perturbation equations for Wi > 1
At leading order for large Wi, the momentum equations
become

i(—p-i-l;ﬂ

Dp =0. (20)

a11)+D[,3D21lf+11'3012 —0, (19

The vorticity equation

gDy + ﬂ[iDau +D%app] =0 Q21

T
can be exactly integrated once, the constant of integration being
the x-dependent pressure gradient along the channel, and so the
flow is governed by the x-momentum Eq. (19). This reflects the
fact that the relaxation length scale is large compared to the
channel width. The constitutive equations are

aar) = 2apn + 4it* Dy + 2Dy, (22)
aayy = ayp + 212y + D2y, (23)
aayy = 2t — 2iDy. 24
The interfacial conditions become

—2i(1 = plels + APy + (1 - p) [ 2] =0. @)
HiﬁD% + ; P (iDars - an)ﬂ = yks, (26)
[v1 =0, 27
[Dy] = 0. (28)

We keep the surface tension term for use in Section 5 where we
consider the possibility that Ca = O(Wi~—>). Elsewhere we take
y = 0. The displacement of the perturbed interface is

§=—, (29)

w

and the no-slip boundary conditions at the walls remain

Yv=Dy=0 at y=(1— Ak, —Ak. (30)

3. UCM liquids (B8 = 0) at high Weissenberg number

We first consider the UCM liquid neglecting surface ten-
sion (y = 0) and using Egs. (21)—(30). This is the simplest case
to study and has the fewest parameters. The solution for the
streamfunction v has the particularly simple form

V) = Ci(y— o) + ¥y — o) + Cyel 170w
 CEl-iey, an

where £ denotes the solution on either side of the interface.
The coefficients must be chosen to satisfy the no-slip boundary
conditions at each wall as well as force balance and continuity
of velocity at the interface. These eight equations are linear in
the C li We find w by the requirement that the associated matrix
has determinant zero.
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3.1. Asymptotic results for Wi > k > 1

When Wi > k > 1, we can calculate w asymptotically.

The exponential terms in (31) have a length scale of order
unity, but the walls are at asymptotically large distances of order
k from the interface. In consequence, for the upper liquid (y >
0) the coefficient C4+ must be exponentially small. Thus the
corresponding term must be negligible close to the interface.
Similarly, the C ;“ term is negligible close to the wall.

We now find Cz' in terms of C ]+ As k — 00, the two bound-
ary conditions at the wall ¢» = Dy = 0 are satisfied by

CH(y—w) + CFy(y — w) + Cf e =Y

aty = (1 — A)k > 1. Some algebra shows that at leading order
ink

Cl =k(A-1)C5.

A similar argument gives

Cl =kAC;.

Since k > 1, we conclude that the C2jt are much smaller than
the C li

Applying the interfacial conditions (25)—(29) at y = 0 and
neglecting the exponentially small terms involving C5” and CI,

we find M v = 0 where v = [C], C, CT, C;]T and

o* +2iv+w+i

exactly and do not appear in the second row of N. They sim-
ilarly drop out of the tangential force balance and thus do
not affect the condition for stability. It is only the two terms
that decay exponentially away from the interface (C, and
C;’ ) that appear in the reduced pair of tangential interfacial
conditions.

After some algebra the determinant of N yields the quintic
equation:

2830° + (£ +4i8° — &7 + 4ig7)o* + (—28° — 887 — 26)0”
(=28 — i — 3iE2 — 3iE — i + 26%)w?
+ Q8 2%+ i+ 2—Dw—E+1=0. (34)

This is identical to the large Wi limit of Renardy’s result
[1] which assumes the perturbations decay before reaching
the wall. This is a remarkable conclusion, for it implies that
the growth rate of the instability is unaffected by the pres-
ence of the channel walls even though the mode structure is
changed.

The neutral stability boundary occurs when w is real. The
only £ allowingrealware £ = 1 and & = &, ~ 0.27688. Between
these values the imaginary part of w is positive, and below this
range it is negative. The imaginary and real parts of the most
dangerous root for w are plotted in Fig. 3.

Ew? + 2itw — Ew — i

0 2 0 2

o(w +i)? wEw +i0)?
M=l _2 0 2% 0
A A—1
1 (1—1) -1 (1+i)&
) 1 w —1

to leading order in k. The first and second rows of M arise from
the x- and y-components of the force balance while the third and
fourth rows come from the x- and y-components of continuity
of velocity.

We seek w such that detM = 0. We replace the fourth row of
M with the sum of the fourth row and w times the third row. The
rows of the resulting matrix are linearly dependent if and only
if the first and (new) fourth rows are linearly dependent. That is,
detM = 0 if and only if detN = 0 where

E2w? + 2w — Ew — i
w(Ew + i)
—1 4 wE(l + 1)

2w2+2ia)+a)+i
w(w+i)2
1+ (-1

28

N:

(33)

The combination of terms used to give the second row of N rep-
resents continuity of the material derivative of the x-component
of velocity at the interface, that is, continuity of tangential accel-
eration at the interface. The flow generated by ¥ = C ]i (y—w)
has the property that the x-component of velocity for a mate-
rial particle does not change: the Eulerian derivative at a point
is balanced by the change in the base flow due to advection
in the y-direction. Consequently the coefficients C f cancel

, (32)

For £ = 0.5, Eq. (34) gives w =~ —.30544 + .06603i. Thus
at large k we expect an instability with growth rate 0.06603 +
O(1/k) and wavespeed —0.30544/k + O(1/k?). Both limits
are clear in Fig. 4 where we have solved the problem numer-
ically with & = 0.5, A = 0.7 for arbitrary k. For moderate k, the
growth rate overshoots the asymptote but decreases again at large
k. Fig. 5 shows the corresponding perturbation flow at k = 30
which occupies the full width of the channel with boundary
layers at the interface and the wall.

Our observations for Wi 3> k >> 1 can be summarized as fol-
lows: we have found an algebraic equation for @ which gives
the stability boundary in terms of £, the ratio of relaxation times.
The perturbation flow is of comparable magnitude throughout
the channel, with boundary layers at the walls and at the inter-
face. The stability criterion is unaffected by the walls and can
be expressed in terms of velocities and forces that are parallel
to the interface.

3.2. Stability for Wi > 1 and general k

To illustrate the stability boundary for general k, we fix &
and allow A and k to vary. Fig. 6 shows the marginal sta-
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(a) Growth Rate at k= (b) 5 Re[w] at k=e
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Fig. 3. UCM liquid. Wi > k > 1. Imaginary and real parts of w for Eq. (34) as & changes. (a) Growth rate. (b) Real part of w.
(a) Wave speed as a function of k (b) Growth rate as a function of k
0.05 - T T ‘ 0.2 " : - .

§ 0 L b e T
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= £ 0.06603
> 2
g 8
-0.05 &
't’\
/ Z0.30544/k
_0'10 J 5 1‘0 1I5 2‘O 25 30 2IO 2'5 30
k

Fig.4. UCM liquids. Wi > 1 for varying k. Growth rates and wave speeds calculated from (19)—(30) compared with the Wi >> k >> 1 asymptotic predictions (dashed)
for £ = 0.5, A = 0.7. (a) Wave speed. (b) Growth rate.

bility curves in (k, A) space. For k <« 1 the wavelength is erate k which grows as & — &, filling most of the plot for
long compared to both the channel width and the relaxation £=0.2.

length scale, so this is a special case of previous long-wave The overshoot in Fig. 4 and the unstable ‘tongues’ in Fig. 6(a)
analysis [10] with instability if A < 0.5. If £ > & ~ 0.28 we and (b) both show that the growth rate overshoots the large k pre-
have shown there is an instability for k > 1. This is clear  diction when kis moderate. This suggests that the next correction
in Fig. 6. For £ < &, there is an unstable tongue for mod- in k for k > 1 is destabilizing.

(@) ° (b) 9

@@ N

w

-9 -9}
—15J =15
-21 . g . -21
0 n/2k /K 3n/2k 2n/k 0 n/2k n/k 3n/2k
X X

Fig. 5. UCM liquids. Wi 3> 1. Unstable mode for £ = 0.5, A = 0.7, and k = 30. The value of w is —0.3000 + 0.0766i. There are boundary layers close to the
interface and the walls. The magnitude of the flow is comparable throughout the channel. (a) Streamlines. (b) Perturbed x-velocity. Note the boundary layers at the
interface and both walls.
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(a) Marginal Stability Curve: & = 0.1
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(c) Marginal Stability Curve: £ = 0.3
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(b) Marginal Stability Curve: &= 0.2
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Fig. 6. UCM liquids. Wi > 1. Marginal stability curves in A-k space at fixed values of £. The noisy areas for large k or small A correspond to regions of numerical
difficulties. (a) £ = 0.1. Well below &, short-waves are stable. There is a small unstable tongue at 10 < k < 15. (b) & = 0.2. Just below & short-waves are stable, but
the unstable tongue has grown much larger. (c) & = 0.3. Just above &, short-waves are unstable and the instability persists down to k = 5. (d) & = 0.7. The picture

is largely unchanged from &£ = 0.3.
4. Oldroyd-B liquids (8 > 0) for Wi > k> 1

We consider here whether the Wi >> k > 1 interfacial insta-
bility found for UCM liquids persists for Oldroyd-B liquids. By
the similarities of the analytic solution with that of the UCM
liquid, we are able to draw some similar conclusions about
the mechanism of instability. However, to determine the growth
rates, we find numerical methods more useful.

Because the term C1(y — w) remains part of solution (B.3)
even in the presence of Newtonian viscosity the remarkable con-
clusion that C; drops out of the tangential force and tangential
acceleration condition at the interface remains valid regardless
of B. We expect that C; is small in order to satisfy boundary con-
ditions at the wall, and so the algebraic terms disappear and the
stability is determined entirely by the two tangential conditions
in the interfacial boundary layer.

Wilson and Rallison [11] studied the k >> 1 limit for Oldroyd-
B liquids with moderate Wi. In this limit the perturbation flow
decays away from the interface and the walls can be neglected.
They showed that for sufficiently large B there is instability
for all £, with the growth rate tending to zero like (1 — 8)°
as B increases to 1. It is known from the UCM results of
Renardy [1] that for sufficiently large Wi (but still small com-
pared to k) there are values of & for which the flow is stable

if B = 0. These results suggest the existence of a critical value
of B above which all flows are unstable. Wilson and Rallison
were able to find stability for 8 as large as 0.11, and pos-
tulated that this is the critical value. When Wi is larger than
k, their analysis breaks down because the walls lie within the
boundary layer. Asymptotics become difficult. We have inves-
tigated this using numerics instead, with the governing Eqgs.
(21)—-(30).

Setting A = 0.5 we fix kK = 30, 60, and 120 and follow the
growth rate in (B, §) space in Fig. 7. At k = 30, there is stability
if both £ and B are small, shown in Fig. 7(a). As k grows, the
stable region increases in size and exists for 8 up to (at least)
0.2.

In the limit 8 — 1, the liquids become identical Newtonian
liquids and so the growth rate tends to zero. That is, for fixed
k, limg_,1S[w] = 0. However, it is clear from the figures that
limg_, 1limy_, oo S[w] # O: the limit is singular. This is different
from the Wi < k case in [11].

To observe the structure of the unstable mode when the liquids
are almost Newtonian, we take £ = 0.5, A = 0.7, 8 = 0.99, and
k = 2000. The perturbation flow is shown in Fig. 8. The bound-
ary layers at the wall have effectively disappeared. There are
still boundary layers close to the interface, but their structure
has changed.
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(a)  Marginal stability curve for A = 0.5, k=30
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Fig. 7. Growth rate contours in the (8, £) plane for Oldroyd-B liquids with Wi > 1 and A = 0.5 for k = 30, 60, and 120. The lower left corner is the only region of
stability. If either £ = 1 or 8 = 1, the two liquids are identical, and the growth rate is zero. For § = 0 (UCM) the k >> 1 asymptotic results from Eq. (34) are in good
agreement. (a) The marginal stability curve at k = 30. (b) The growth rate at k = 30. (c) The growth rate at k = 60. (d) The growth rate at k = 120.

Our results show that the behavior of Oldroyd-B fluids
is similar to that of UCM fluids. The critical value of B at
which stability is impossible appears to be approximately 0.2.
We have found that the 8 — 1 and k — oo limits cannot be

interchanged.

5. The effect of surface tension

Insofar as an elastic instability requires a displacement of
the interface, surface tension will be expected to suppress the
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y
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0 2k ik

X
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2m/k

instability, especially for large k. However, in

this section we

find that surface tension does not eliminate instabilities, and so
the mechanism of the instability does not require a perturbation

to the interface.

5.1. The effect of surface tension at high Weissenberg

number

In this section we assume that Ca ~ Wi—3
tension remains dynamically important at large

so that surface
Wi.
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Fig. 8. Unstable perturbation flow of Oldroyd-B liquid with Wi > 1, 8 =0.99, £ = 0.5, A = 0.7, and k = 2000. For these parameters v = —0.0261 + 0.3330:.
Compare with Fig. 5 where 8 =0, A = 0.7, k = 30, and £ = 0.5. (a) Streamlines. (b) Perturbed x-velocity.
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Fig. 9. UCM liquids. The effect of surface tension on growth rate for Wi > 1, £ = 0.3, and A = 0.5. For k >> 1 all growth rates tend to the asymptotic limit 0.019.

() 0 < k < 25.(b) 25 < k < 200.

We consider Egs. (21)-(30), with y # 0. In the limit ky —
00, the normal force balance (26) reduces to § = 0. Since § = 0,
the kinematic equation for the interface (29) becomes y¥(0) = 0
and 6 disappears from the problem. The only remaining time
derivatives are in the evolution of the stress perturbation, Egs.
(22)—(24). Thus any instability manifests itself only in the growth
of the liquid velocity and elastic stresses and not in an interfacial
perturbation.

5.1.1. UCM liquids (B = 0) with nonzero surface tension

In the limit where Wi > k >> 1, we have a simple analytic
representation of the streamfunction in both liquids, and we pro-
ceed as in Section 3.1. The addition of surface tension affects
only the second row of the matrix M in Eq. (32). This row plays
no role in the construction of N in Eq. (33), and so the linear
stability of the system is unchanged by the addition of surface
tension (although the perturbation flow is changed). The remark-
able conclusion is that a perturbation with the same growth rate
occurs regardless of the size of the surface tension whenever
Wi k> 1.

To see the effect of surface tension at moderate k we solve the
equations numerically. In Fig. 9 we plot the growth rates with

(D

j N

21 T
0 w2k n/k 3n/2k 2n/k
X

(@) o

w

w

©

(&}

& =10.3 and A = 0.5 for different values of the surface tension
measured by y. The infinite surface tension (y = oco) curve was
calculated by replacing the normal force balance with the zero-
displacement condition ¥(0) = 0. As expected, the growth rate
of the disturbance is everywhere reduced by the addition of sur-
face tension. For small k the growth rates are close to the zero
surface tension limit. As k increases, they approach the infinite
surface tension limit. However as k — oo, both zero and infi-
nite surface tension limits tend to the same (positive) growth
rate, 0.019.

In Fig. 10 we show the perturbation flow for the same param-
eters as in Fig. 5 except that the surface tension is infinite.
Boundary layers exist at the interface with the same length scale
as before.

The fact that surface tension does not affect the growth
rate if Wi > k> 1 has consequences for our understand-
ing of the physical mechanism driving the k >> 1 instability.
At large Wi the mechanism cannot depend on interface dis-
placement, contradicting previous claims [9,20], instead it
must rely on effects tangential to the interface that are not
affected by surface tension. We do not have a physical
explanation for the instability mechanism, but it seems depen-

—15 | )

-21

0 n/2k
X

'k 3n/2k

Fig. 10. UCM liquids. Perturbation flow for the same parameters as in Fig. 5: Wi > 1, £ = 0.5, A = 0.7, and k = 30, but with y = co. The value of w is
—0.2855 — 0.0227i. As k increases it destabilizes and tends to the same growth rate as for the zero surface tension case. (a) Streamlines at infinite surface tension.

The interface is flat. (b) Perturbed x-velocity.
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Fig. 11. Oldroyd-B liquids with Wi > 1. Plot of growth rates for g = 0.99 as
k changes with £ = 0.1 and A = 0.5 fixed. The top curve corresponds to zero
surface tension, while the bottom curve assumes it is infinite so that the interface
remains flat.

dent on base advection of perturbed stresses combined with
relaxation.

5.1.2. Oldroyd-B liquids (B > 0) with nonzero surface
tension at high Weissenberg number

We have not undertaken a complete study of parameter space
for Oldroyd-B liquids with surface tension, but because tangen-
tial effects determine the stability of Oldroyd-B liquids at large
Wi, we expect surface tension to have no influence at sufficiently
large k.

In Fig. 11 we plot the growth rates for £ = 0.1, A = 0.5, and
B =0.99. We see that the infinite surface tension growth rate
is positive for k > 1, and appears in this limit to approach the
same value as for zero surface tension.

5.2. The effect of surface tension for UCM liquids at
general Wi and k > 1

Setting Wi = O(1) and k > 1 corresponds to a disturbance
wavelength that is much shorter than both the channel width

(a) Finite Wi short wave growth rate:y=0
1
0
0.8
0.05
E 981 Unstable
0.4 0.05
0
0.2 -0.05
ﬁ/‘J:" Stable
0 ‘ ;
0 50 100 150 200
Wi

and the relaxation length. This is the standard short-wave limit,
which has been studied in the absence of surface tension by
Renardy [1] and Chen and Joseph [5].

In the presence of surface tension, Chen and Joseph [5] state
that at sufficiently large k the flow is stable. This contrasts with
our results at asymptotically large Wi. To explore this discrep-
ancy, we consider the effect of surface tension at finite Wi. We
first reproduce the results of [1,5] without surface tension and
then consider the infinite surface tension limit.

With moderate Wi in the absence of surface tension, the walls
become irrelevant for k 3> 1 and k disappears from the analysis.
The solution from (B.2) is a sum of exponentially growing and
decaying terms. The growing terms must vanish, so the solutions
take the form

V) = Cr (v — e (o)

+C, exp [éy(—i+\/1~l—52:w2)] y <0,

Y(y) = CF (y — w)exp (;g)

1
+ .
+C5 exp [y(—l— 1+Wi2>1 y > 0.

The interfacial conditions with zero surface tension define a
4 x 4 matrix. Setting the determinant to zero provides a (compli-
cated) quintic equation in w found by Renardy [1] which reduces
to Eq. (34) at large Wi. Fig. 12(a) plots the growth rate of the
most dangerous mode in (Wi, &) space, equivalent to Fig. 1 of
Chen and Joseph [5] and Fig. 1 of Renardy [1], but with different
axis scalings.

In the case of infinite surface tension, we replace the nor-
mal force balance by ¥(0) = 0. Then the same method gives a
(significantly simpler) quintic equation for w:

([RE + &> QWi — iE*Q + iRE")w’
+ ([2i82Q + 2iRE> + 2iRE> — €2 + & + 2iEQ|Wi + 2ig?
—2RE* 4+ 2820 + 260 — 2RE)w”

(b) Finite Wi short wave growth rate:y =«

1 . : v

0.8
Unstable
0.6
g

0.4
0.2

0 . ‘ .
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Fig. 12. UCM liquids. The effect of surface tension on the large k growth rate for finite Wi. As Wi — oo, the growth rates for zero and infinite surface tension
coincide. (a) Growth rate contours with no surface tension. At £ = 1 the growth rate is zero. (b) growth rate contours with infinite surface tension. The growth rate

tends to —1 (i.e., pure relaxation) as Wi — 0.
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+ (1-28°0 — iREQ — 4RE —2R¢ — i€ +iRQ — 450
+ iE\Wi + 2i82 Q — 4iRE — 38> + 4iEQ

i —i&?
l

—36—& —2iR—1
§-¢& i + Wi

)a)3+ (lio +ire
— iR — 4iRE —i€Q — 2RQ + 2REQ — 4iEQ|Wi

2 . . 26-2\ ,
—4i& — 4l§+4R—4l—4§Q+7 w
l

+([—RE+2EQ — Q + &2 + 2R — (Wi
—iQ+4+iR+46w+[1 — E)Wi+2i =0,

where Q = /&2 4+ 1/Wi2 and R = /1 + 1/ Wi2. At leading
order for Wi > 1 this also reduces to Eq. (34). On solving this
quintic for finite Wi we find aregion of parameter space where the
system is unstable, seen in Fig. 12(b). As Wi increases, Fig. 12(a)
and (b) become identical.

The fact that instability persists, with a growth rate of order
unity, even with infinite surface tension contradicts the con-
clusions of Chen and Joseph [5], where it is assumed that
the instability is caused by displacement of the interface. This
assumption leads to an inappropriate ansatz that the stabilizing
effect of surface tension on the growth rate is O(k) fork >> 1, and
hence an incorrect conclusion (at large Wi) that surface tension
stabilizes the flow.

The fact that the instability exists with a flat interface fur-
ther raises the possibility that the interaction between the liquid
and the wall could also lead to an instability. However, the wall
provides different boundary conditions, and earlier work [14]
shows that instability does not occur.

6. Scalings of high Wi instabilities

Figs. 5, 8, and 10 show that the perturbation flow in the
bulk of the liquids is as large as in the boundary layer close
to the interface. In addition, we have seen that the growth
rate of the instability is independent of the position of the
walls.

This implies that the instability arises at the interface and
that the remainder of the flow, whether in the bulk or the wall
boundary layers, has no effect on the growth rate. In this sec-
tion we offer a discussion of the scalings to explain why the
outer region is dynamically passive despite having a flow of
comparable magnitude.

6.1. The UCM liquid

For clarity and simplicity we focus on the infinite surface
tension limit of the UCM liquids for which y» = 0 at the interface
and 8 = 0.

Because the wavelength is long compared with the channel
width, the perturbation liquid velocity is parallel to the channel
walls at leading order, the liquid pressure is constant across the
channel, and the y-component of the momentum Eq. (20) is

automatically satisfied. The x-component of the momentum Eq.
(19) becomes

aj] —iDapp = G, (35)

where D denotes differentiation in y, G = pt is a perturbation
pressure gradient, and a;; is the perturbation to the ij component
of the stress.

The evolution of the perturbation stresses in Egs. (22)-(24)
is controlled, through «, by the base flow advection y, growth w,
and relaxation 7!, In the boundary layer at the interface y =
O(1). Outside the boundary layer y = O(k). It follows that o« =
—iw + ik + 1/t = O(1) in the boundary layer and thus a;; ~ ¥,
but outside the boundary layer o = O(k) and |a;;| < [¥].

By Eq. (35), outside the interfacial boundary layer the
pressure gradient G must be at most comparable to a1; and
ajpz. In the boundary layer the stresses are larger and the
pressure is negligible, so Eq. (35) is a third-order ordinary
differential equation having three solutions. We find D ~ 1.
One solution grows unphysically and is discarded, leaving two
solutions whose coefficients can be chosen. The y-velocity
is zero at the interface to satisfy the infinite surface ten-
sion assumption. The x-velocity may be fixed arbitrarily, so
defining the magnitude of the perturbation. These two condi-
tions uniquely determine i throughout the interfacial boundary
layer.

The solutions in the bulk are algebraic and D ~ 1/y. At the
edge of the boundary layer, the x-velocity must be of comparable
magnitude to that in the interior of the boundary layer. The flux
of liquid in the x-direction in the boundary layer is negligible,
so to conserve mass, the bulk region must have no net flux, but
it must simultaneously match the x-velocity set by the boundary
layer at its edge. The pressure gradient G is determined so as
to maintain zero flux in the bulk, and so the horizontal flow
throughout the bulk region is comparable to that in the boundary
layer.

At the wall the flow must satisfy the no-slip boundary condi-
tion. This forces the existence of a second boundary layer, where
again D ~ 1. There is no appreciable flux in this layer.

In this scenario there is no feedback whereby the flow in the
bulk can influence the flow in the interfacial boundary layer.
Thus the growth rate is locally determined and the bulk flow is
driven by this interfacial region.

6.2. The effect of B

Including Newtonian viscosity modifies the x-momentum
equation so that it becomes

D’y = G. (36)

. . Pt
ajg —iDajy —i
=5
The structure in each region begins to be affected by the B
terms when: B8/(1 — ) ~ 1 in the interfacial boundary layer,
B/(1 — B) ~ k in the bulk, and B/(1 — B) ~ 1/k in the wall
boundary layer. Thus at sufficiently large k, the wall boundary
layer is affected by the Newtonian viscosity, but the bulk flow
is unchanged and the interfacial boundary layer is affected only
if B is large enough. Because the bulk region is unchanged, it
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Fig. 13. High Wi growth rates for Oldroyd-B liquids with 8 = 0.99, £ = 0.5,
and A =0.7.

does not feed back into the interfacial layer and so the stability
is again determined by the interfacial boundary layer.

The structure shown in Fig. 8 (8 = 0.99, k = 2000) suggests
that as 8 — 1 the wall boundary layer expands until it has the
same length scale as the bulk region.

7. An additional instability of Oldroyd-B liquids at high
Wi

The picture we have developed so far for high Wi instabilities
is incomplete. We have found (by accident) an additional insta-
bility in Oldroyd-B liquids. In this section we briefly analyze
some of its properties.

In Fig. 13 we plot the growth rates for two unstable modes for
B=0.99,&=0.5and A =0.7. As k — 0o one of the modes
has fixed growth rate. This is the previously observed mode
discussed in Section 4. The other mode has higher growth rate
at intermediate values of k, but stabilizes as k — oo.

We have not studied this new mode in detail. The perturba-
tion flow for kK = 200 is shown in Fig. 14. The real part of w
has a different sign from that of the k — oo instability, and so
this mode travels in the opposite direction of the k — oo mode
relative to the interface.

(a) 60

20 ¢

-20

|

D

(=]
e

-100

~140
0 2k nk
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3n/2k 2n/k

Fig. 15. Sketch for ‘coextrusion’ Poiseuille flow U = Up(1 — yz/Lz) in a chan-
nel.

This mode stabilizes at large k, but the value of k at which
it stabilizes increases as the interface approaches the wall. This
suggests an interaction of the boundary layer at the interface
with the wall. We have not found a similar instability in UCM
flows, but we cannot rule out such a possibility.

8. Other flow profiles for the UCM liquids

We have shown that the large k instability in Couette flow
is generated by effects close to the interface, even though the
mode structure is influenced by the presence of the channel
walls. Consequently, we expect to see unstable modes having
the same growth rates for other base flow profiles whenever the
Weissenberg number based on the local shear rate U’ at the inter-
face is sufficiently high. We demonstrate this by considering two
cases of Poiseuille flow of two liquids through a channel.

We return to dimensional variables and consider two con-
figurations. The first is symmetric three-layer Poiseuille flow (a
‘coextrusion flow’) as sketched in Fig. 15. We take the interfaces
to be at y = = AL. The second configuration is asymmetric; it
has only two liquid layers with a single interface at y = AL so
thatt =14 forA <y/L <landt=1_for —1 < y/L < A.
In both cases, the base flow is U = (U(y), 0) where U(y) =
Uo(1 — y?/L?). The inner (lower) relaxation time is taken to
be t_ while the outer (upper) relaxation time is 74 = &r_. We
neglect surface tension.

When the local Weissenberg number at the interface U't_ =
2UpAt_/L is large we expect to see the same growth rate as
found for Couette flow so long as the shear rate is effectively

(b) 60

201

=100

-140
0 w2k ik
X

3n/2k

Fig. 14. Unstable high Wi perturbation flow of Oldroyd-B liquids with 8 = 0.99, £ = 0.5, A = 0.7, and k = 200. For these parameters w = 1.6084 + 1.0262i. (a)

Streamlines. (b) Perturbed x-velocity.
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(a) Growth rate for varicose flow:£ = 0.2
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Fig. 16. Coextruded UCM liquids at high Wi. Contour plots of growth rate for varicose modes for symmetric Poiseuille flow. The bold line is the marginal stability
curve. For & > & there is instability at large Upt_k holding A fixed, while stability exists if & < &.. The dashed lines show constant A(Upt_k)'/?. (a) Short-waves
stable for § = 0.2 if A > l/(Uor,k)l/z. (b) Short-waves unstable for § = 0.3 if A > l/(UoLk)l/z.

constant throughout the interfacial boundary layer. That is, we
expect similar behavioraslongas U’/ U” « 1/kU’zt at the inter-
face. When these terms are comparable, U”/kU’*t ~ 1 and
different effects are expected.

When the interfaces are far from the centerline, the linearized
equations at the interface are similar to those for Couette flow,
and we do indeed find the same stability criteria observed previ-
ously. As showninFig. 16,if § > & =~ (0.28 we find instability at
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large values of Upt_k (holding A fixed), while there is stability
if £ < &.. Some numerical difficulties are evident in Fig. 16(b)
where both Upt_k and A are large.

Although the growth rates are the same as for Couette flow,
the mode structures are not. We plot the perturbation flow for the
Couette-like instability in Figs. 17 and 18. As before, the flow
has a boundary layer close to the interface. However, the per-
turbation decays before reaching the walls, contrasting with the
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Fig. 17. Coextruded UCM liquids. Perturbation flows for £ = 0.5, A = 0.7, and Upt_k = 30. For the varicose mode wt_ = 15.6203 + 0.0598i and for the sinuous
mode wt_— = 15.6208 + 0.0590i. The perturbation flow decays before reaching the walls. (a) Sinuous mode streamlines. (b) Sinuous mode perturbed x-velocity. (c)

Varicose mode streamlines. (d) Varicose mode perturbed x-velocity.
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Fig. 18. Coextruded UCM liquids. Perturbation flows with a single interface for £ = 0.5, A = 0.7 with Upt_k = 30, 500. For Uypt_k = 30, we have wt_ =
15.6205 + 0.0594i and for Upt_k = 500, wr_ = 255.3063 + .0657i. In both cases the perturbation flow decays before reaching the wall. (a) Streamlines with
Upt_k = 30. (b) Perturbed x-velocity with Upt_k = 30. (c) Streamlines with Upt_k = 500. (d) Perturbed x-velocity with Upt_k = 500.

Couette flow case. Between the interface and a boundary layer
at the centerline, the flow is similar in appearance to the Cou-
ette case, but close to the centerline different effects occur. This
region permits a return flow providing zero net mass flux with-
out requiring a significant perturbation in the outer flow. When
& = 0.5 and Uyt_k = 30, the values of wt_ in the frame of ref-
erence of the interface are all about 0.32 + 0.06i and the value
for Upt_k = 500 is about 0.306 + 0.066i. These are consistent
with the result for Couette flow, wt_ — 0.30544 + 0.06603i
as Upt_k — oo (cf., Fig. 4 where the shear rate has opposite
sign).

Fig. 16 suggests that if A is comparable with 1/(Ugt_k)'/?,
different behavior arises. This corresponds to the distinguished
limit where U’/ U” has the same magnitude as 1/kU’z, dis-
cussed in a companion paper [21].

9. Discussion

This paper has considered purely-elastic interfacial instabili-
ties of parallel shear flows of viscoelastic liquids. Previous work
on this topic has classified modes on the basis of (dimensional)
wavelength and channel width into long-waves k~' > L and
short-waves k~! « L, ignoring the elastic length scale Uyt.
The hidden assumption was made in previous analyses that
k' >> Upt or k~! « Uyt respectively. However, the analy-
sis here shows that a different classification should be used:

long-waves for which k!> Uyr, L; wide-channel for which
L > k=1, Uyt; and fast-flow for which Uyt > L, k~1. Under
this new classification, the distinct behaviors of short-waves at
large and small Wi are each a special case of a more general class
which persists even when the wavelength is long compared to
the channel width.

Because there are three length scales, it is perhaps unsurpris-
ing that the stability of waves with kL <« 1 and of waves with
kL >> 1 cannot offer any guarantee of stability for intermedi-
ate k (contrary to the assertion in [22,23]). This is evident in
Fig. 16(a) for a range of A around 0.5, and is discussed further
in a companion paper [21].

There are two surprising features of the fast-flow instability:
the first is that the growth rate is determined entirely within a
boundary layer at the interface, even though the perturbation
flow can fill the entire channel. The second is that the instability
persists even with asymptotically large surface tension.

We are not aware of any experiments that have observed
the high Wi instability predicted in this paper. Nevertheless, the
numerical estimates suggest that experimental parameters need
not be extreme. For sufficiently viscous Boger liquids with a
relaxation time measured in seconds and 8 > 0.2, we predict
that an instability should be observed for a shear rate of 1s~!,
so long as the liquids do not mix. Visualizing the instability may
be difficult if surface tension is strong such that the interface is
not significantly perturbed.
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Throughout we have assumed that the Reynolds number is
zero. This assumption is not required to observe the fast-flow
instabilities so long as the flow is laminar. The local Reynolds
number based on the shear rate and the thickness of the boundary
layer will be small even if the global Reynolds number based
on the shear rate and the channel width is large. Consequently
inertia is unimportant in the boundary layer and so the instability
is expected to persist in the presence of modest inertia.

We have assumed that the interface is sharp. In general the
width of the interface will be on the molecular scale, much
smaller than any length scale considered in this paper. Under
the continuum hypothesis, it is safe to assume zero width. If the
liquids have very weak surface tension however, they may dif-
fuse into one another, yielding a mixed layer. If the length scale
of this mixed layer becomes comparable to the length scale of the
boundary layer governing stability, then our results must change.
Earlier work at moderate Wi has shown that this blurring leads
to stability [13].

Instability occurs for infinite surface tension because the nor-
mal force balance at the interface decouples from the rest of
the analysis and plays no role. This observation conflicts with a
widely-held assumption about the driving force for purely elastic
interfacial instabilities namely [24]:

the mechanism of purely elastic interfacial instabilities has
been demonstrated to be the coupling of the jump in base
flow normal stresses across the interface and the perturbation
velocity field.

This statement may be true for many purely elastic interfacial
instabilities and is certainly the case for long-wave instabilities.
However, since the jump in base flow normal stress disappears
from the analysis in the limiting case, a distinct mechanism must
be involved. Our results provide some restrictions on the stability
mechanism. The stability does not depend on the details of the
flow except within a thin layer about the interface. It does not
depend on a perturbation to the interface and can occur with
infinite surface tension. Because the mode travels relative to
the interface at leading order, the mechanism must depend on
the sign of the shear rate. We have not been able to isolate the
mechanism.
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Appendix A. Linear perturbation equations

We consider the stability of the flow to infinitesimal distur-
bances. These disturbances change the velocity field U, the stress
3, and in general the interface location A. We use lower case
letters u, o, and § to denote the corresponding perturbations.

The perturbation quantities are small and may be taken to be
proportional to exp(ikx — iwt). We take u = (D, —iky) to sat-
isfy incompressibility automatically. ‘D’ denotes differentiation
with respect to y.

The perturbed stress o satisfies

1-p
o=—-pl+u 2,3e+T ,
where the perturbation rate of strain is
oo ikDyr (D? 4 k)2
@+ B2yy2 —ikDyr '

The momentum equation V - ¥ = 0 gives
iko11 + Doz =0, (A.1)
iko12 + Doz = 0. (A.2)

Taking the curl of the momentum equation and substituting for
o we find the vorticity equation

2 1-8_.
BID?* — k) Y + . ﬂ[lkD(au —an) + (D* + kHan] = 0.
(A.3)
The evolution equations for a are
Uo (L UT? Uot
aay = Zfalg + 2ik (2 12 +1 Dw+ZTD Y,
(A4)
U Ut?
aary = —2ay + k2 (2 02 + 1) ¥ + Dy, (AS)
L L
U
aay = ZkZTOTd/ — 2ikDy, (A.6)
where @« = —iw + ikUpy/L + 1/7.

The no-slip boundary conditions at the wall are
Yv=Dy=0 at y=(1—-AL,—-AL. (A7)
Continuity of velocity at the interface y = 0 gives
[¥1 = [Dy] =0. (A.8)

The perturbed interface lies at y = §, and the interface normal
becomes N + n where n = (—iké, 0). To linear order the inter-
facial condition [ X + XJ - (N 4+ n) = yx(N + n) becomes

—2ik(1 — B)[TNU3S/L? + BID* Y1 + (1 — B) [[“g]] —0,
(A.9)

— 2
[[—fBD3W+ 1-p) (_Dfl12 +a22_a“)ﬂ _ &6,
ik T ik nw
(A.10)

where we have used Eq. (A.1) to eliminate the pressure from
(A.10). These equations correspond to Egs. (15) and (16) of
[11] with the addition of surface tension.
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The interface is a material surface and so (0; + [U + u] -
V)6 = —ikyr. Thus since the base state velocity vanishes at the
interface

_k

w

1) (A.11)
where  is evaluated at y = 0.

The Egs. (A.3)—(A.11) define the eigenvalue problem for the
complex growth rate w.

Appendix B. Analytic solutions

For the UCM liquid (8 = 0) Gorodtsov and Leonov [25]
explicitly found the streamfunction v solving (9)—(12) by sub-
stituting for the a;; in (9) and factoring the resulting differential
operator. We generalize their factorization and use this to give
the solution for arbitrary 8. We record the solution and limiting
cases below for future reference.

Combining the constitutive Eqs. (10)—(12) with the vorticity
Eq. (9) we find

0!2
o’D? —2iaD —2 — —
Wi

1
« (Lsta+ D% 4 2itD — 222 = 2 E 1) g,
Wi

where s = B/(1 — B). This gives the explicit solution

Y0) = Cily = wexp (o) + Caly — w)exp (=)

i i

y 1 c oo 2020 1
Cyexp (=) M ~(+itWi), =, - (at—
+eaexp Wi (s( W) s Wi (a+sr

+C (y)u Lagiowi, 2, 2 (g

exp (= —(1+it - — —

4P Wi P Yo wi\ ) )
(B.1)

where M and U are Kummer’s functions [26]. This solution is
equivalent to one found by Wilson et al. [15]. In practice we do
not find this solution to be useful for our stability problem and
so we turn instead to numerics to solve the Eqgs. (9)—(18) when
B is nonzero.

In the B =0 limit, the solution found by Gorodtsov and
Leonov [25]

V0) = Cily = w)exp () + Caly — w)exp (=)

i

. 1
+C3€Xp |“[y (—l — 1+ ‘LW)]
+C FRYI—

ex T — r-y—
ARt I Wi

is more amenable to asymptotic analysis. From this solution we
see that if Wi is large (but less than the dimensionless channel
width k) there are two boundary layers, one with thickness of
order unity and another with thickness of order Wi.

(B.2)

The solution at large Wi for the Oldroyd-B liquid is
(s—2/2s)
ww=cxy—m+cw@_wa3Q,+H)

1 —onl/2
T (MM>

N

1\ 6-2/29) 1 — o2
+ Ca <Ol + S‘E) Vis—2/s) 21'\/5# ,

)
(B.3)

where J and Y are Bessel functions [26]. For a UCM liquid
(B = 0) at large Wi we find

() = C1(y — ) + Coy(y — @) + C3e 7170 4 Cyel =00,
B.4)

The exp(xy/Wi) terms in Eq. (B.2) have been replaced by
algebraic terms. This reflects the fact that the thickness of the
corresponding boundary layer has become large compared to
the channel width.

Appendix C. Numerical methods

In principle we can find ¢ analytically, but if k is finite or
if B # 0, it is more convenient in practice to solve the problem
numerically. We use two methods which provide results consis-
tent with one another as well as with the analytic limits presented
and which reproduce previous results.

The first method is orthogonal shooting [27,10,11]. At each
wall we have two free conditions. Using an initial guess for @
we integrate two independent solutions from the bottom wall
to the top. The boundary conditions at the top wall define a
2 x 2 matrix whose determinant is zero when w is an eigen-
value. We refine our guess for w by Newton—Raphson iteration
and use parameter continuation to follow the modes through
parameter space. Previous studies have used an orthogonaliza-
tion during the integration, but we have not found this to be
necessary. Our implementation reproduces earlier results from
[10-12,15]. Some numerical difficulties were encountered for
large or small values of k as detailed below. Parameter continu-
ation sometimes finds another mode if the step in parameter is
too large.

The second method is a spectral algorithm as in [28,29,15].
We expand the ¥ and a;; variables as sums of Chebyshev poly-
nomials. The linear problem reduces to the form A v = iwB v
where A and B are square matrices and v is a vector containing
the coefficients of the expansions for ¥ and a;;. The method
works best if all equations and variables are kept to a self-
consistent accuracy. We keep the vorticity Eq. (9) to N terms, Eq.
(10) to N + 1 terms and Eqgs. (11) and (12) to N + 2 terms. We
keep ¥, ay1, ap, andaxpy to N+4, N+ 1, N+2,and N 42
terms respectively. The eigenvalues are found through Matlab’s
eig and eigs algorithms. Again we are able to repeat earlier
calculations.

Fluid Mech. (2007), doi:10.1016/j.jnnfm.2007.01.009

Please cite this article in press as: J.C. Miller, J.M. Rallison, Interfacial instability between sheared elastic liquids in a channel, J. Non-Newtonian



dx.doi.org/10.1016/j.jnnfm.2007.01.009

+Model
JNNFM-2672; No.of Pages 17

J.C. Miller, JM. Rallison / J. Non-Newtonian Fluid Mech. xxx (2007 ) xxx—xxx 17

The spectral method does not need a good initial guess to find
each eigenvalue. Further, it behaves better for large k. However, it
is computationally slower. In addition there is a continuous spec-
trum of modes where o = 0, and the spectral method requires
many polynomials to resolve modes with w close to this line
[15].

We use the spectral algorithm to find modes and then param-
eter continuation with either algorithm to follow them. Modes
disappear into (or emerge out of) the continuous spectrum [15],
so we cannot guarantee that all modes have been found though
we do find all modes predicted in the k — 0 or k — oo limits.
If any modes have been missed, they exist only at intermediate
wavenumbers.
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